Exact learning curves for Gaussian process regression on large random graphs
نویسندگان
چکیده
We study learning curves for Gaussian process regression which characterise performance in terms of the Bayes error averaged over datasets of a given size. Whilst learning curves are in general very difficult to calculate we show that for discrete input domains, where similarity between input points is characterised in terms of a graph, accurate predictions can be obtained. These should in fact become exact for large graphs drawn from a broad range of random graph ensembles with arbitrary degree distributions where each input (node) is connected only to a finite number of others. Our approach is based on translating the appropriate belief propagation equations to the graph ensemble. We demonstrate the accuracy of the predictions for Poisson (Erdos-Renyi) and regular random graphs, and discuss when and why previous approximations of the learning curve fail.
منابع مشابه
Exact learning curves for Gaussian process regression on community random graphs
We study learning curves for Gaussian process regression which characterise performance in terms of the Bayes error averaged over datasets of a given size. Whilst learning curves are in general very difficult to calculate we show that for discrete input domains, where similarity between input points is characterized in terms nodes on a graph, accurate predictions can be obtained. These should i...
متن کاملRandom walk kernels and learning curves for Gaussian process regression on random graphs
We consider learning on graphs, guided by kernels that encode similarity between vertices. Our focus is on random walk kernels, the analogues of squared exponential kernels in Euclidean spaces. We show that on large, locally treelike, graphs these have some counter-intuitive properties, specifically in the limit of large kernel lengthscales. We consider using these kernels as covariance matrice...
متن کاملLearning curves for Gaussian process regression on random graphs: effects of graph structure
We investigate how well Gaussian process regression can learn functions defined on graphs, using large random graphs as a paradigmatic examples. We focus on learning curves of the Bayes error versus training set size for three types of random graphs, random regular, Poisson and Barabasi-Albert. We begin by developing a theory for the random regular graphs using eigenvalues of the covariance mat...
متن کاملKernels and learning curves for Gaussian process regression on random graphs
We investigate how well Gaussian process regression can learn functions defined on graphs, using large regular random graphs as a paradigmatic example. Random-walk based kernels are shown to have some non-trivial properties: within the standard approximation of a locally tree-like graph structure, the kernel does not become constant, i.e. neighbouring function values do not become fully correla...
متن کاملLearning Curves for Gaussian Processes
I consider the problem of calculating learning curves (i.e., average generalization performance) of Gaussian processes used for regression. A simple expression for the generalization error in terms of the eigenvalue decomposition of the covariance function is derived, and used as the starting point for several approximation schemes. I identify where these become exact, and compare with existing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010